939 research outputs found

    Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network

    Get PDF
    The coupled plate interface of subduction zones—commonly called the seismogenic zone—has been recognized as the origin of fatal earthquakes. A subset of the after-shock series of the great Antofagasta thrust-type event (1995 July 30; Mw= 8.0) has been used to study the extent of the seismogenic zone in northern Chile. To achieve reliable and precise hypocentre locations we applied the concept of the minimum 1-D model, which incorporates iterative simultaneous inversion of velocity and hypocentre parameters. The minimum 1-D model is complemented by station corrections which are influenced by near-surface velocity heterogeneity and by the individual station elevations. By relocating mine blasts, which were not included in the inversion, we obtain absolute location errors of 1 km in epicentre and 2 km in focal depth. A study of the resolution parameters ALE and DSPR documents the importance of offshore stations on location accuracy for offshore events. Based on precisely determined hypo-centres we calculate a depth of 46 km for the lower limit of the seismogenic zone, which is in good agreement with previous studies for this area. For the upper limit we found a depth of 20 km. Our results of an aseismic zone between the upper limit of the seismogenic zone and the surface correlates with a detachment zone proposed by other studies; the results are also in agreement with thermal studies for the Antofagasta forearc regio

    Adaptively parametrized surface wave tomography: methodology and a new model of the European upper mantle

    Get PDF
    In this study, we aim to close the gap between regional and global traveltime tomography in the context of surface wave tomography of the upper mantle implementing the principle of adaptive parametrization. Observations of seismic surface waves are a very powerful tool to constrain the 3-D structure of the Earth's upper mantle, including its anisotropy, because they sample this volume efficiently due to their sensitivity over a wide depth range along the ray path. On a global scale, surface wave tomography models are often parametrized uniformly, without accounting for inhomogeneities in data coverage and, as a result, in resolution, that are caused by effective under- or overparametrization in many areas. If the local resolving power of seismic data is not taken into account when parametrizing the model, features will be smeared and distorted in tomographic maps, with subsequent misinterpretation. Parametrization density has to change locally, for models to be robustly constrained without losing any accurate information available in the best sampled regions. We have implemented a new algorithm for upper mantle surface wave tomography, based on adaptive-voxel parametrization, with voxel size defined by both the ‘hit count' (number of observations sampling the voxel) and ‘azimuthal coverage' (how well different azimuths with respect to the voxel are covered by the source-station distribution). High image resolution is achieved in regions with dense data coverage, while lower image resolution is kept in regions where data coverage is poorer. This way, parametrization is everywhere tuned to optimal resolution, minimizing both the computational costs, and the non-uniqueness of the solution. The spacing of our global grid is locally as small as ∌50 km. We apply our method to identify a new global model of vertically and horizontally polarized shear velocity, with resolution particularly enhanced in the European lithosphere and upper mantle. We find our new model to resolve lithospheric thickness and radial anisotropy better than earlier results based on the same data. Robust features of our model include, for example, the Trans-European Suture Zone, the Panonnian Basin, thinned lithosphere in the Aegean and Western Mediterranean, possible small-scale mantle upwellings under Iberia and Massif Central, subduction under the Aegean arc and a very deep cratonic root underneath southern Finlan

    Increasing Language Awareness and Self-efficacy of FL Students Using Self-assessment and the ACTFL Proficiency Guidelines

    Get PDF
    This study describes how oral language was assessed in an advanced-level college foreign language (FL) conversation course. Learners used the ACTFL Proficiency Guidelines to guide self-analyses of their oral production at intervals throughout the course. The intent was to provide opportunities for learners to develop an understanding of what constitutes oral proficiency, gauge their own progress, and set personal goals. Learners’ self-analysis narratives suggested they began to notice different aspects of their speech and to better articulate their abilities and limitations. Broadly speaking, the results suggest that self-assessment of oral performance guided by the Proficiency Guidelines is an effective way to increase FL students’ language awareness and self-efficacy. Pedagogical implications and limitations to this approach are discussed

    Subduction-zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling

    Get PDF
    A high-quality data set of 3790 earthquakes were simultaneously inverted for hypocentre locations and 3-D P-wave velocities in Costa Rica. Tests with synthetic data and resolution estimates derived from the resolution matrix indicate that the velocity model is well constrained in central Costa Rica to a depth of 70 km; northwestern and southeastern Costa Rica are less well resolved owing to a lack of seismic stations and seismicity. Maximum H2O content and seismic wave speeds of mid-ocean ridge basalt and harzburgite were calculated for metamorphic phase transformations relevant to subduction. Both the 3-D P-wave velocity structure and petrological modelling indicate the existence of low-velocity hydrous oceanic crust in the subducting Cocos Plate beneath central Costa Rica. Intermediate-depth seismicity correlates well with the predicted locations of hydrous metamorphic rocks, suggesting that dehydration plays a key role in generating intermediate-depth earthquakes beneath Costa Rica. Wadati-Benioff zone seismicity beneath central Costa Rica shows a remarkable decrease in maximum depth toward southeastern Costa Rica. The presence of asthenosphere beneath southeastern Costa Rica, which entered through a proposed slab window, may explain the shallowing of seismicity due to increased temperatures and associated shallowing of dehydration of the slab. Tomographic images further constrain the existence of deeply subducted seamounts beneath central Costa Rica. Large, low P-wave velocity areas within the lower crust are imaged beneath the southeasternmost volcanoes in central Costa Rica. These low velocities may represent anomalously hot material or even melt associated with active volcanism in central Costa Rica. Tomographic images and petrological modelling indicate the existence of a shallow, possibly hydrated mantle wedge beneath central Costa Ric

    A lithospheric cross-section through the Swiss Alps—I. Thermokinematic modelling of the Neoalpine orogeny

    Get PDF
    In this paper we develop a forward 2-D thermokinematic model to investigate the Neoalpine 35-0 Ma phase of orogeny along the European Geotraverse (EGT) through the Swiss Alps on a crustal and lithospheric scale. Using a divergence-free kinematic model (div v=0), we define mass displacements, which subsequently serve as input to a transient thermal model. the thermal model uses critically assessed material prorameters and accounts for the depth dependence of the thermal properties in processes such as crustal thickening and mantle-lithospheric subduction. Based on the presentday density pattern of the deep seismic image and estimated exhumation and shortening rates, we derive, in a first modelling step, a mass-displacement field describing the Neoalpine orogeny as a uniform process in time. In a second—thermal—modelling step, this kinematic scenario is further refined by modelling the non-uniform cooling histories of the southern Lepontine in the Penninic domain. For that purpose we adopt lithospheric shortening rates—and consequently exhumation rates—to agree with total Neoalpine shortening, while keeping the geometry of the kinematic model fixed. the resultant thermokinematic model reflects the main characteristics of Neoalpine tectonics, and shows a good overall agreement with combined geological and geophysical data. the asymmetric feature of the present-day tectonic structure along the profile is strongly reflected in the thermal structure of the lithosphere. This demonstrates the need for a kinematic model to investigate the deep-temperature field in active tectonic provinces. For further refinement of the model, the amounts of shortening have to be more precisely estimated, and a higher spatial density in geochronological and metamorphic data is required. Furthermore, surface heat-flow values are, up to now, too uncertain to constrain the predicted surface heat flow. In summary, our results show that we need, in particular, data constraining the horizontal component of the tectonic and thermal evolution. the results of the Neoalpine orogeny modelling demonstrate that the presented thermokinematic procedure yields a good first-order approximation to investigate crustal-scale and lithospheric processes. We conclude. therefore, that the approach presented provides the potential for application not only to continent-continent collision zones, but also to any active tectonic provinc

    Three dimensional interface modelling with two-dimensional seismic data: the Alpine crust-mantle boundary

    Get PDF
    We present a new approach to determine the 3-D topography and lateral continuity of seismic interfaces using 2-D-derived controlled-source seismic reflector data. The aim of the approach is to give the simplest possible structure consistent with all reflector data and error estimates. We define simplicity of seismic interfaces by the degree of interface continuity (i.e. shortest length of offsets) and by the degree of interface roughness (least surface roughness). The method is applied to structural information of the crust—mantle boundary (Moho) obtained from over 250 controlled-source seismic reflection and refraction profiles in the greater Alpine region. The reflected and refracted phases from the Moho interface and their interpretation regarding crustal thickness are reviewed and their reliability weighted. Weights assigned to each reflector element are transformed to depth errors considering Fresnel volumes. The 2-D-derived reflector elements are relocated in space (3-D migration) and interpolation is performed between the observed reflector elements to obtain continuity of model parameters. Interface offsets are introduced only where required according to the principle of simplicity. The resulting 3-D model of the Alpine crust—mantle boundary shows two offsets that divide the interface into a European, an Adriatic and a Ligurian Moho, with the European Moho subducting below the Adriatic Moho, and with the Adriatic Moho underthrusting the Ligurian Moho. Each sub-interface depicts the smoothest possible (i.e. simplest) surface, fitting the reflector data within their assigned errors. The results are consistent with previous studies for those regions with dense and reliable controlled-source seismic data. The newly derived Alpine Moho interface, however, surpasses earlier studies by its lateral extent over an area of about 600 km by 600 km, by quantifying reliability estimates along the interface, and by obeying the principle of being consistently as simple as possibl

    Consistent phase picking for regional tomography models: application to the greater Alpine region

    Get PDF
    The resolution and reliability of tomographic velocity models strongly depends on quality and consistency of available traveltime data. Arrival times routinely picked by network analysts on a day-to-day basis often yield a high level of noise due to mispicks and other inconsistencies, particularly in error assessment. Furthermore, tomographic studies at regional scales require merging of phase picks from several networks. Since a common quality assessment is not usually available for phase data provided by different networks, additional inconsistencies are introduced by the merging process. Considerable improvement in the quality of phase data can only be achieved through complete repicking of seismograms. Considering the amount of data necessary for regional high-resolution tomography, algorithms combining accurate picking with an automated error assessment represent the best tool to derive large suitable data sets. In this work, we present procedures for consistent automated and routine picking of P-wave arrival times at local to regional scales including consistent picking error assessment. Quality-attributed automatic picks are derived from the MPX picking system. The application to earthquakes in the greater Alpine region demonstrates the potential of such a repicking approach. The final data set consists of more than 13 000 high-quality first-arrivals and it is used to derive regional 1-D and preliminary 3-D P-wave models of the greater Alpine region. The comparison with a tomographic model based on routine phase data extracted from the ISC Bulletin illustrates effects on tomographic results due to consistency and reliability of our high-quality data se

    Moho depth and Poisson's ratio in the Western-Central Alps from receiver functions

    Get PDF
    Current knowledge about deep crustal structure of the Alpine orogen has mainly been derived from P-wave velocity models obtained from active and passive seismic experiments. A complementary S-wave model to provide lithological constraints necessary for unique structural interpretation has been missing to date. In this paper, we present important new information on S-wave velocity model in the Alps. We applied the receiver function method using 6 yr of high quality data from 61 permanent and temporary stations sampling the Western—Central Alps. We determined first-order crustal features Moho depth (H) and average Vp/Vs ratio (Îș) with the H-Îș stacking technique that uses timing of direct and multiple P-to-S converted phases from the Moho interface. Synthetic tests reveal a dipping Moho interface, expected beneath an orogen, causes a systematic bias of H and Îș potentially leading to misinterpretation. We thus applied corrections determined from synthetic data to remove the bias, providing better fit of recovered Moho depths with active seismic estimates. For each site, we also obtained independent H and Îș estimates based on the timing of the strong Ps-phase. Our results show a gently south—southeast dipping European Moho at a depth of ∌24-30 km beneath the Northern Alpine Foreland, steepening rapidly towards the Europe—Africa suture zone to reach a maximum depth of ∌55 km. South of the suture, the Moho of the Adriatic crust, promontory of the African plate, is at ∌35-45 km depth. In the previously ill-constrained Western Alps, we found the European Moho at ∌30 km depth beneath the more external units dipping east—northeast to reach ∌50-55 km in the inner core of the Alps. The Poisson's ratio clearly correlates with the tectonic units that comprise the Alps. Average crustal values in the European Alpine Foreland are close to 0.25. In the Alps, we observe low values (0.22) in the highly deformed nappes of the Mesozoic Helvetic and Southern Alps indicating a thickening of felsic upper-crustal material. In contrast, the Poisson's ratio is significantly higher (0.26) in the Penninic and Austroalpine units near the suture zone. This rapid and significant change marks a clear rupture between the Alpine forelands and the suture domain. We assign this high Poisson's ratio to doubling of mafic lower crust consistent with results from previous active seismic experiments. A continuation of the lower crustal wedge into the central part of the Western Alps, however, seems unlikely based on low observed Poisson's ratio

    High-resolution 3-D P-wave model of the Alpine crust

    Get PDF
    The 3-D P-wave velocity structure of the Alpine crust has been determined from local earthquake tomography using a set of high-quality traveltime data. The application of an algorithm combining accurate phase picking with an automated quality assessment allowed the repicking of first arriving P-phases from the original seismograms. The quality and quantity of the repicked phase data used in this study allows the 3-D imaging of large parts of the Alpine lithosphere between 0 and 60 km depth. Our model represents a major improvement in terms of reliability and resolution compared to any previous regional tomographic studies of the Alpine crust. First-order anomalies like crust—mantle boundary (Moho) and the Ivrea body in the Western Alps are well resolved and in good agreement with previous studies. In addition, several (consistent) small-scale anomalies are visible in the tomographic image. A clear continuation of the lower European crust beneath the Adriatic Moho in the Central Alps is not observed in our results. The absence of such a signature may indicate the eclogitization of the subducted European lower crust in the Central Alps. In agreement with previous results, the additional analysis of focal depths in our new 3-D P-wave model shows that all studied earthquakes in the northern foreland have occurred within the European crust. Waveforms and focal depths suggest that at least one of the analysed events south of the Alps is located in the Adriatic mantl

    A Survival-Adjusted Quantal-Response Test for Analysis of Tumor Incidence Rates in Animal Carcinogenicity Studies

    Get PDF
    In rodent cancer bioassays, groups of animals are exposed to different doses of a chemical of interest and followed for tumor occurrence. The resulting tumor rates are commonly analyzed using a survival-adjusted Cochran-Armitage (CA) trend test. The CA trend test has reasonable power when the tumor-response curve is linear in dose, but it may be underpowered for a nonlinear response. An alternative survival-adjusted test procedure based on isotonic regression methodology has previously been proposed. Although this alternative procedure performs well when the tumor response is nonlinear in dose, it has less power than the CA trend test when the response is linear in dose. Here, we introduce a new survival-adjusted test procedure that makes use of both the CA trend test and the isotonic regression-based trend test. Using a broad range of experimental conditions typical of National Toxicology Program (NTP) bioassays, we conducted extensive computer simulations to compare the false-positive error rate and power of the proposed procedure with the survival-adjusted CA trend test. The new procedure competes well with the survival-adjusted CA trend test when observed tumor rates are linear in dose and performs substantially better when observed tumor rates are nonlinear in dose. Further, the proposed trend test almost always has a smaller false-positive rate than does the survival-adjusted CA trend test. We also developed an order-restricted inference-based procedure for performing multiple pairwise comparisons between each of the dose groups and the control group. The trend test and the multiple pairwise comparisons test are demonstrated using an example from a study conducted by the NTP
    • 

    corecore